ABDULLAH GUL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE BIOENGINEERING DEPARTMENT COURSE DESCRIPTION AND SYLLABUS

N/A

Course Name	CODE	SEMESTER	T+L Hour	CREDIT	ECST
FUNDAMENTALS OF BIOMEMS	ECE 641	Fall-Spring	3+0	3	10

Prerequisite Courses

Course Type Selective Course English Language Course Assistant Prof. Kutay İçöz Coordinator Lecturers Assistant Prof. Kutay İçöz Course N/A Assistants Learning the fundamentals of materials and fabrication methods of bio micro/nano Course electromechanical devices. Reviewing recent literature and application of the devices to biology Objectives and medicine. • Learning the fundamentals of BioMEMS. · Learning the fundamentals of materials used in BioMEMS. Learning the fabrication methods of BioMEMS. Learning • Detailed study of the surface chemistry and functionalization methods. Outcomes Learning the fundamentals of BioMEMS based biosensors. Learning the fundamentals of microfluidics. · Gaining the ability to understand the devices developed for cells and biomolecules. Nanotechnology and its applications Materials and specifications Fabrication Process: Etching, Deposition and patterning Surface properties Nanotechnology based transduction Microfluidics **Course Content** • Micro/nano biosensors · Standard laboratory methods Micro/nano cantilevers · Biochips.

WEEKLY SUBJECTS AND RELATED PRELIMINARY PAGES Week Subjects Preliminary BioMEMS and its applications, market value, advantages of The relevant articles from 1 miniaturization the literature Materials: Silicon, silicon nitride, silicon oxide, metals, polymers and their specifications The relevant articles from 2 Nano-Fabrication techniques: the literature Lithography and light sensitive polymers Micro-Fabrication techniques: Deposition methods (spin coating, e-beam evaporation, chemical vapor deposition, The relevant articles from 3 the literature sol-gel method), etching methods (wet and dry etching) deep reactive ion etching Surface Props developed with nanotechnology: Chemical and The relevant articles from 4 biological receptors, surface coating and surface chemistry the literature Surface Props developed with nanotechnology: Micro The relevant articles from 5 patterning methods the literature Midterm 6 Microfluidic Devices and nanotechnology: Advantages. Viscosity, Reynold's Number, Laminar Flow, Flow profile, The relevant articles from 7 microchannel resistance, flow in pores media, diffusion, the literature surface contact angle, wetting, electrophoresis, dielectrophoresis, electro osmosis 8 Biosensors: standard laboratory analysis techniques (ELISA, The relevant articles from

	flow cytometry) new generation techniques (QCM, SPR), micro/nano analysis techniques, micro cantilevers, operation modes surface stress, frequency modes. Detection mechanism and comparison of cantilevers.	the literature
9	Biosensors: Interferometry and interferometric cantilevers and application areas, weight measurement of individual micro nano particles, enhancement of frequency mode operation	The relevant articles from the literature
10	BioMEMS for Cells: Definition and application areas, Single cell measurement techniques	The relevant articles from the literature
11	Midterm	
12	BioMEMS and medical applications 1	The relevant articles from the literature
13	BioMEMS and medical applications 2	The relevant articles from the literature
14	BioMEMS and medical applications 3	The relevant articles from the literature
15	BioMEMS and medical applications 4	The relevant articles from the literature
16	Final Exam	

RESOURCES	
Course Notes	Lecture Slides
Other Resources	Course Textbook: "Introduction to BioMEMS" by Albert Folch.

MATERIAL SHARING				
Documents	Lecture notes, slides			
Homework	Students will be given one homework each week			
Exams	2 Midterms and 1 Final Exam			

-

RATING SYSTEM						
SEMESTER WORKS	NUMBER	CONTRIBUTION				
Midterm	2	40				
Homework	10	20				
TOTAL	10	10				
Success Rate of Semester		70				
Success Rate of Final		70				
TOTAL	1	30				

Course Category	
Basic Sciences and Mathematics	%50
Engineering Sciences	%50
Social Sciences	%0

тн	THE RELATIONSHIP BETWEEN THE LEARNING OUTCOMES AND PROGRAM COMPETENCE					
No	Program Outcomes		Contribution Level			
			2	3	4	5
1	The skills of using mathematics, science and engineering information in advanced research,					х
2	The skills of analysing, designing and/or implementing an original system that will be able to solve an engineering problem,					х
3	The skills of using the required software, hardware and modern measurement equipments in their field of research					Х
4	The skills of planning independent research and implementing in detail,					Х
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level,			Х		
6	The skills of innovative and interrogative thinking and finding original solutions					Х

*From 1 to 5, it increasingly goes.

ECTS / WORK-LOAD TABLE						
Activities	Activities	Duration (Hour)	Total (Work-Load)			
Course Duration (Including exam week: 16x total course hour)	16	3	48			
Out of Class Exercise Time (Pre-study, reinforcement)	16	8	128			
Searching on Internet, library study	16	3	48			
Presentation	5	3	15			
Homework	10	3	30			
Midterms	2	15	30			
Final	1	15	15			
Total Work-Load			314			
Total Work-Load / 30			314/30			
Course ECTS Credit			10			